Predictors and risk factors of spontaneous premature birth: Аnamnestic characteristics, ultrasound, and biomarkers (a literature review)
DOI:
https://doi.org/10.37800/RM.3.2023.63-71Keywords:
spontaneous premature birth, predictors of premature birth, risk factors for premature birthAbstract
Relevance: Premature birth (PB) is the leading health problem worldwide and is currently considered the leading cause of newborn mortality. Approximately 15 million babies are born prematurely yearly, accounting for about 11% of all births worldwide. Since the PB etiology remains unclear, identifying risk factors and determining individual risk is important in managing pregnant women. Despite significant efforts to reduce the incidence of spontaneous premature birth (SPB), they remain the leading cause of perinatal morbidity and mortality. The existing screening strategies are not perfect.
The study aimed to examine and analyze current data on risk factors and predictors of premature birth for predicting premature birth.
Materials and Methods: The review covered data on SPB risk factors and predictors over the past decade published in Medline, Scopus, Web of Science, Google Scholar, PubMed, Willey, and the Cochrane Library. The search utilized such keywords as “spontaneous premature birth,” “predictors of premature birth,” and “risk factors for premature birth” using MeSH.
Results: Of all the known factors, a history of birth control and miscarriage are the leading risk factors for SPB. Cervicometry, or measuring the length of the cervix during ultrasound examination, is a common and fairly effective method for predicting SPB. Fetal fibronectin is one of the common markers for predicting PB. In addition to cervical factors, maternal serum markers have also been proposed for predicting PB.
Conclusion: Identifying SPB risk factors is an important component of obstetric care, as early intervention can effectively reduce the risk of SPB. There is no single or combined screening method for PB sensitive enough to identify women at risk of PB and specific enough to prevent unnecessary interventions and high treatment costs. Cervicometry is the most economical method used in clinical practice. Studies on metabolomics, proteomics, and microRNA profiling have brought a new dimension to this topic. Perhaps in the future, with a clear identification of women at true risk of PB, more effective preventive strategies will be developed.
References
Rocha T.A.H., Thomaz E.B.A.F., Almeida D.G., Silva N.C., Queiroz R.C.S., Andrade L., Facchini L.A., Sartori M.L.L., Costa D.B., Campos M.A.G., Silva A.A.M., Staton C., Vissoci J.R.N. Data-driven risk stratification for preterm birth in Brazil: a population-based study to develop of a machine learning risk assessment approach // The Lancet Regional Health – Americas. – 2021. – Vol. 3. – P. 100053. http://doi.org/10.1016/j.lana.2021.100053
Walani S.R. Global burden of preterm birth // Int. J. Gynaecol. Obstet. – 2020. – Vol. 1. – P. 31-33. https://doi.org/10.1002/ijgo.13195
Исенова С.Ш., Казыбаева А.С., Божбанбаева Н.С., Асемов А., Баймусанова Г.Н., Кабыл Б.К., Исина Г.М. Преждев- ременные роды и Streptococcus группы B – есть ли связь? (обзор литературы) // Репродуктивная медицина. – 2022 – №4(53). – С. 47-54. [Isenova S.Sh., Kazybaeva A.S., Bozhbanbaeva N.S., Asemov A., Bajmusanova G.N., Kabyl B.K., Isina G.M. Prezhdevremennye rody i Streptococcus gruppy B – est' li svjaz'? (obzor literatury) // Reproduktivnaja medicina. – 2022 – №4(53). – S. 47-54. (in Russ.)] https://doi.org/10.37800/RM.3.2022.47-54
Torchin H., Ancel P.Y. Epidemiology and risk factors of preterm birth // J. Gynecol. Obstet. Biol. Reprod. (Paris). – 2016. – Vol. 10(45). – P. 1213-1230. https://doi.org/10.1016/j.jgyn.2016.09.013
Cobo T., Kacerovsky M., Jacobsson B. Risk factors for spontaneous preterm delivery // Int. J. Gynaecol. Obstet. – 2020. – Vol. 1(150). – P. 17-23. https://doi.org/10.1002/ijgo.13184
Koullali B., Oudijk M.A., Nijman T.A.J., Mol B.W.J., Pajkrt E. Risk assessment and management to prevent preterm birth // Semin. Fetal. Neonatal. Med. – 2016. – Vol. 21(2). – P. 80-88. https://doi.org/10.1016/J.SINY.2016.01.005
Glover A.V., Manuck T.A. Screening for spontaneous preterm birth and resultant therapies to reduce neonatal morbidity and mortality: A review // Semin. Fetal. Neonatal. Med. – 2018. – Vol. 2(23). – P. 126-132. https://doi.org/10.1016/J.SINY.2017.11.007
Phillips C., Velji Z., Hanly C., Metcalfe A. Risk of recurrent spontaneous preterm birth: a systematic review and meta-analysis // J. BMJ. Open. – 2017. – Vol. 7(6). – P. e015402. https://doi.org/10.1136/BMJOPEN-2016-015402
Omani-Samani R., Mansournia M.A., Sepidarkish M., Almasi-Hashiani A., Safiri S., Vesali S., Maroufizadeh S. Cross- sectional study of associations between prior spontaneous abortions and preterm delivery // Int. J. Gynaecol. & Obstet. – 2017. – Vol. 1(140). – P. 81-86. https://doi.org/10.1002/IJGO.12348
Ke L., Lin W., Liu Y., Ou W., Lin Z. Association of induced abortion with preterm birth risk in first-time mothers // Sci. Rep. – 2018. – Vol. 8. – P. 5353. https://doi.org/10.1038/S41598-018-23695-7
KC S., Gissler M.,Virtanen S.M., Klemetti R. Risks of Adverse Perinatal Outcomes after Repeat Terminations of Pregnancy by their Methods: a Nationwide Register-based Cohort Study in Finland 1996-2013 // Paediatr. Perinat. Epidemiol. – 2017. – Vol. 6(31). – P. 485-492. https://doi.org/10.1111/PPE.12389
Kyrgiou M., Athanasiou A., Paraskevaidi M., Mitra A., Kalliala I., Martin-Hirsch P., Arbyn M., Paraskevaidis E. Adverse obstetric outcomes after local treatment for cervical preinvasive and early invasive disease according to cone depth: systematic review and meta-analysis // BMJ. – 2016. – Vol. 354. – P. i3633. https://doi.org/10.1136/BMJ.I3633
Landman A.J.E.M.C., Don E.E.,Vissers G., Ket H.C.J., Oudijk M.A., De Groot C.J.M., Huirne J.A.F.,de Boer M.A. The risk of preterm birth in women with uterine fibroids: A systematic review and meta-analysis // PLoS. One. – 2022. – Vol. 17(6). – P. e0269478. https://doi.org/10.1371/JOURNAL.PONE.0269478
Koullali B., Oudijk M.A., Nijman T.A.J., Mol B.W.J., Pajkrt E. Risk assessment and management to prevent preterm birth // Semin. Fetal. Neonatal. Med. – 2016. – Vol. 2(21). – P. 80–88. https://doi.org/10.1016/J.SINY.2016.01.005
Frey H.A., Klebanoff M.A. The epidemiology, etiology, and costs of preterm birth // Semin. Fetal. Neonatal Med. – 2016. – Vol. 2(21). – P. 68–73. https://doi.org/10.1016/J.SINY.2015.12.011
Staneva A., Bogossian F., Pritchard M., Wittkowski A. The effects of maternal depression, anxiety, and perceived stress during pregnancy on preterm birth: A systematic review // Women Birth. – 2015. – Vol. 3(28). – P. 179–193. https://doi.org/10.1016/J.WOMBI.2015.02.003
Cai C., Vandermeer B., Khurana R., Nerenberg K., Featherstone R., Sebastianski M., Davenport M.H. The impact of occupational shift work and working hours during pregnancy on health outcomes: a systematic review and meta-analysis // Am. J. Obstet. Gynecol. – 2019. – Vol. 6(221). – P. 563–576. https://doi.org/10.1016/J.AJOG.2019.06.051
Fuchs F., Monet B., Ducruet T., Chaillet N., Audibert F. Effect of maternal age on the risk of preterm birth: A large cohort study // PLoS. One. – 2018. – Vol. 13(1) . – P. e0191002. https://doi.org/10.1371/JOURNAL.PONE.0191002
Roman A., Ramirez A., Fox N.S. Prevention of preterm birth in twin pregnancies // Am. J. Obstet. Gynecol. MFM. – 2022. – Vol. 4(2S). – P. 100551. https://doi.org/10.1016/J.AJOGMF.2021.100551
Cavoretto P., Candiani M., Giorgione V., Inversetti A., Abu-Saba M.M., Tiberio F., Sigismondi C., Farina A. Risk of spontaneous preterm birth in singleton pregnancies conceived after IVF/ICSI treatment: meta-analysis of cohort studies // Ultrasound. Obstet. Gynecol. – 2018. – Vol. 1(51). – P. 43-53. https://doi.org/10.1002/uog.18930
Wang Y.P., Ray J.G., Pudwell J., Gaudet L., Peng Y., Velez M.P. Mode of conception and risk of spontaneous vs. provider-initiated preterm birth: population-based cohort study // Fertil. Steril. – 2022. – Vol. 5(118). – P. 926–935. https://doi.org/10.1016/J.FERTNSTERT.2022.07.028
Liu B., Xu G., Sun Y., Du Y., Gao R., Snetselaar L.G., Santillan M.K., Bao W. Association between maternal pre-pregnancy obesity and preterm birth according to maternal age and race or ethnicity: a population-based study // Lancet Diabetes. Endocrinol. – 2019. – Vol. 9(7). – P. 707-714. https://doi.org/10.1016/S2213-8587(19)30193-7
Teshome A., Yitayeh A. Relationship between periodontal disease and preterm low birth weight: systematic review // Pan. Afr. Med J. – 2016. – Vol. 24. – P. 215. https://doi.org/10.11604/PAMJ.2016.24.215.8727
Qin L.L., Lu F.G., Yang S. H., Xu H.L., Luo B.A. Does Maternal Vitamin D Deficiency Increase the Risk of Preterm Birth: A Meta-Analysis of Observational Studies // Nutrients. – 2016. – Vol. 8(5). – P. 301. https://doi.org/10.3390/NU8050301
Rogne T., Tielemans M.J., Chong M.F.F., Yajnik C.S., Krishnaveni G.V., Poston L., Jaddoe V.W.V., Steegers E.A.P., Joshi S., Chong Y.S., Godfrey K.M., Yap F., Yahyaoui R., Thomas T., Hay G., Hogeveen M., Demir A., Saravanan P., Skovlund E., Martinussen M.P., Jacobsen G.W., Franco O.H., Bracken M.B., Risnes K.R. Associations of Maternal Vitamin B12 Concentration in Pregnancy with the Risks of Preterm Birth and Low Birth Weight: A Systematic Review and Meta-Analysis of Individual Participant Data // Am. J. Epidemiol. – 2017. – Vol. 185(3). – P. 212-223. https://doi.org/10.1093/AJE/KWW212
Soneji S., Beltrán-Sánchez H. Association of Maternal Cigarette Smoking and Smoking Cessation With Preterm Birth // JAMA. Netw. Open. – 2019. – Vol. 2(4). – P. e192514. https://doi.org/10.1001/JAMANETWORKOPEN.2019.2514
Moosa Y., Kwon D., Oliveira T., Wong E.B. Determinants of Vaginal Microbiota Composition // Front. Cell. Infect. Microbiol. – 2020. – Vol. 10. – P. 467. https://doi.org/10.3389/FCIMB.2020.00467
Mosbah A., Barakat R., Nabiel Y., Barakat G. High-risk and low-risk human papilloma virus in association to spontaneous preterm labor: a case-control study in a tertiary center, Egypt // J. Matern Fetal Neonatal Med. – 2018. – Vol. 6(31). – P. 720–725. https://doi.org/10.1080/14767058.2017.1297403
Capoccia R, Greub G, Baud D. Ureaplasma urealyticum, Mycoplasma hominis and adverse pregnancy outcomes // Curr. Opin. Infect. Dis. – 2013. – Vol. 26(3). – P. 231-240. https://doi.org/10.1097/QCO.0B013E328360DB58
Armistead B., Oler E., Adams W.K., Rajagopal L. The Double Life of Group B Streptococcus: Asymptomatic Colonizer and Potent Pathogen // J. Mol. Biol. – 2019. – Vol. 431(16). – P. 2914-2931. https://doi.org/10.1016/j.jmb.2019.01.035
Barros-Silva J., Pedrosa A.C., Matias A. Sonographic measurement of cervical length as a predictor of preterm delivery: a systematic review // J. Perinat. Med. – 2014. – Vol. 42(3). – P. 281-293. https://doi.org/10.1515/JPM-2013-0115
Daskalakis G., Theodora М., Antsaklis Р., Sindos M., Grigoriadis T., Antsaklis A., Papantoniou N., Loutradis D., Pergialiotis V. Assessment of Uterocervical Angle Width as a Predictive Factor of Preterm Birth: A Systematic Review of the Literature // Biomed. Res. Int. – 2018. – Vol. 2018. – P. 1837478. https://doi.org/10.1155/2018/1837478
Hessami K., Kasraeian M., Sepulveda-Martinez A., Parra-Cordero M.C., Vafaei H., Asadi N., Vielba M.B. The Novel Ultrasonographic Marker of Uterocervical Angle for Prediction of Spontaneous Preterm Birth in Singleton and Twin Pregnancies: A Systematic Review and Meta-Analysis // Fetal. Diagn. Ther. – 2021. – Vol. 48(2). – P. 81–87. https://doi.org/10.1159/000510648
Camen I.V., Manolea M.M., Vrabie S.C., Sandulescu M.S., Serbanescu M.S., Boldeanu M.V., Novac L., Istrate-Ofiteru A.M., Neamtu S.D., Dijmarescu A.L. Prediction of Preterm Birth with Serial Measurements of Ultrasound Markers // Curr. Health. Sci. J. – 2022. – Vol. 48(2). – P. 162-168. https://doi.org/10.12865/CHSJ.48.02.04
Wang B., Zhang Y., Chen S., Xiang X., Wen J., Yi M., He B., Hu B. Diagnostic accuracy of cervical elastography in predicting preterm delivery: A systematic review and meta-analysis // Medicine. – 2019. – Vol. 98(29). – P. e16449. https://doi.org/10.1097/MD.0000000000016449
Gabor M., Kunochova I., Krizko M., Alfoldi M., Feriancova M., Ferianec V. Simple ultrasound evaluation of fetal adrenal glands as a marker of imminent preterm birth: a preliminary report // Bratisl. Lek. Listy. – 2021. – Vol. 10(122). – P. 721-726. https://doi.org/10.4149/BLL_2021_115
Nunes V., Cross J., Speich J.E., Morgan D.R., Strauss J.F., Ramus R.M. Fetal membrane imaging and the prediction of preterm birth: a systematic review, current issues, and future directions // BMC. Pregnancy Childbirth. – 2016. – Vol. 16(1). – P. 387. https://doi.org/10.1186/S12884-016-1176-5.
Albayrak E., Dogru H., Ozmen Z., Altunkaş A., Kalayci T., Inci M., Server S., Sonmezgoz F., Aktash F., Demir O. Is evaluation of placenta with real-time sonoelastography during the second trimester of pregnancy an effective method for the assessment of spontaneous preterm birth risk // Clin. Imaging. – 2016. – Vol. 5(40). – P. 926-930. https://doi.org/10.1016/j.clinimag.2016.04.006
Lucaroni F., Morciano L., Rizzo G., Antonio F., Buonuomo E., Palombi L., Arduini D. Biomarkers for predicting spontaneous preterm birth: an umbrella systematic review // J Matern Fetal Neonatal Med. – 2018. – Vol. 6(31). – P. 726–734. https://doi.org/10.1080/14767058.2017.1297404
Stock S.J.E., Horne M., Bruijn M., White H., Boyd K.A., Heggie R., Wotherspoon L., Aucott L., Morris R K., Dorling J., Jackson L., Chandiramani M., David A.L., Khalil A., Shennan A., Gert-Jan V.B., Victoria H.M., Lavender T., Schuit E., Susan H.C., Mol B.W.J., Richard R., Norman J.E., Norrie J. Development and validation of a risk prediction model of preterm birth for women with preterm labour symptoms (the QUIDS study): A prospective cohort study and individual participant data meta-analysis // PLoS. Med. – 2021. – Vol. 7(18). – P. e1003686. https://doi.org/10.1371/journal.pmed.1003686
Dochez V., Ducarme G., Gueudry P., Joueidi Y., Boivin M., Boussamet L., Pelerin H., Thuaut A.L., Lamoureux Z., Riche V.P., Winer N., Thubert T., Marie E. Methods of detection and prevention of preterm labour and the PAMG-1 detection test: a review // J. Perinat. Med. – 2020. – Vol. 2(49). – P. 119-126. https://doi.org/10.1515/jpm-2020-0289
Melchor J.C., Khalil A.,Wing D., Schleussner E., Surbek D. Prediction of preterm delivery in symptomatic women using PAMG-1, fetal fibronectin and phIGFBP-1 tests: systematic review and meta-analysis // Ultrasound Obstet. Gynecol. – 2018. – Vol. 4(52). – P. 442–451. https://doi.org/10.1002/UOG.19119
Dehaene I., Lorthe E., Gurney L., Turtiainen P., Schwickert A., Svenvik M., Care A., Bergman L. Accuracy of the combination of commercially available biomarkers and cervical length measurement to predict preterm birth in symptomatic women: A systematic review // Eur. J. Obstet. Gynecol. Reprod. Biol. – 2021. – Vol. 258. – P. 198–207. https://doi.org/10.1016/J.EJOGRB.2020.12.026
Nikolova T., Bayev O., Nikolova N., Di Renzo G.C. Comparison of a novel test for placental alpha microglobulin-1 with fetal fibronectin and cervical length measurement for the prediction of imminent spontaneous preterm delivery in patients with threatened preterm labor // J. Perinat. Med. – 2015. – Vol. 4(43). – P. 395-402. https://doi.org/10.1515/JPM-2014-0300
Eleje G.U., Ezugwu E.C., Eke A.C., Eleje L.I., Ikechebelu J.I., Ezebialu I.U., Obiora C.C., Nwosu B.O, Ezeama C.O., Udigwe G.O., Okafor C.I., Ezugwu F.O. Accuracy of a combined insulin-like growth factor-binding protein-1/interleukin-6 test (Premaquick) in predicting delivery in women with threatened preterm labor // J. Perinat. Med. – 2017. – Vol. 8(45). – P. 915-924. https://doi.org./10.1515/JPM-2016-0339
Bruijn M.M.C., Vis J.Y., Wilms F.F, Oudijk M.A., Kwee A., Porath M.M., Oei G., Scheepers H.C.J., Spaanderman M.E.A., Bloemenkamp K.V.M., Haak M.C., Bolte A.C., Vandenbussche F.P.H.A., Woiski M.D., Bax C.J., Cornette J.M.J., Duvekot J.J, Bijvank B.W.A.N., Eyck J., Franssen M.T.M., Sollie K.M., Post J.A.M., Bossuyt P.M.M., Opmeer B.C., Kok M., Mol B.W.J., Baaren G.J. Comparison of the Actim Partus test and the fetal fibronectin test in the prediction of spontaneous preterm birth in symptomatic women undergoing cervical length measurement // Eur. J. Obstet. Gynecol. Reprod. Biol. – 2016. – Vol. 206. – P. 220-224. https://doi.org/10.1016/J.EJOGRB.2016.09.018
Berghella V., Saccone G. Fetal fibronectin testing for prevention of preterm birth in singleton pregnancies with threatened preterm labor: a systematic review and metaanalysis of randomized controlled trials // Am. J. Obstet. Gynecol. – 2016. – Vol. 4(215). – P. 431-438. https://doi.org/10.1016/J.AJOG.2016.04.038
Cetin O., Karaman E., Boza B., Cim N., Sahin H. G. Maternal serum calponin 1 level as a biomarker for the short-term prediction of preterm birth in women with threatened preterm labor // J. Matern. Fetal. Neonatal. Med. – 2018. – Vol. 2(31). – P. 216-222. https://doi.org/10.1080/14767058.2017.1280021
Hudić I., Stray-Pedersen B., Szekeres-Bartho J., Fatušić Z., Dizdarević-Hudić L., Tomić V., Polgar B., Hadžiefendić B., Fatušić J. Maternal serum progesterone-induced blocking factor (PIBF) in the prediction of preterm birth // J. Reprod. Immunol. – 2015. – Vol. 109. – P. 36–40. https://doi.org/10.1016/J.JRI.2015.02.006
Cando L.F.T., Dispo M.D., Tantengco, O.A.G. Salivary progesterone as a biomarker for predicting preterm birth: A systematic review and meta-analysis // American Journal of Reproductive Immunology. – 2022. – Vol. 88(6). – P. e13628. https://doi.org/10.1111/AJI.13628
Soghra K., Zohreh S., Kobra A.K., Reza M.M., Single measurement of salivary estriol as a predictor of preterm birth // Pak. J. Biol. Sci. – 2014. – Vol. 17(5). – P. 730-734. https://doi.org/10.3923/PJBS.2014.730.734 52. Hornaday K.K., Wood E.M., Slater D.M. Is there a maternal blood biomarker that can predict spontaneous preterm birth prior to labor onset? A systematic review // PLoS One. – 2022. – Vol. 17(4). – P. e0265853. https://doi.org/10.1371/JOURNAL.PONE.0265853
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reproductive Medicine
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The articles published in this Journal are licensed under the CC BY-NC-ND 4.0 (Creative Commons Attribution – Non-Commercial – No Derivatives 4.0 International) license, which provides for their non-commercial use only. Under this license, users have the right to copy and distribute the material in copyright but are not permitted to modify or use it for commercial purposes. Full details on the licensing are available at https://creativecommons.org/licenses/by-nc-nd/4.0/.