Association of pregestational obesity with anemia during pregnancy: A literature review
DOI:
https://doi.org/10.37800/RM.3.2022.50-56Keywords:
pregnancy, iron deficiency (ID), iron deficiency anemia (IDA), overweight, obesity, inflammation, body mass index (BMI)Abstract
Relevance: Оbеse pregnant women have а mild
inflammatory response associated with hepcidin
overexpression. Inflammation affects iron metabolism by increasing hepcidin levels. Obesity and anemia are serious problems worldwide; expectant mothers often suffer from these conditions. Gravidas with obesity tend to gain more weight during pregnancy than gravidas with normal body mass index. Obesity before pregnancy is associated with a high risk in pregnancy, including hypoferremia and anemia
due to iron deficiency, which are already common between expectant mother and their neonates.
This review considers obesity-associated inflammatory mediator activation as a potential primary cause of iron deficiency (ID) or iron deficiency anemia (IDA) in obese pregnant women.
The review aimed to summarize the current studies reporting the measurement of molecular markers of iron metabolism and inflammatory mediators in pregnant women with pregestational obesity.
Methods: This review included all types of publications in English and Russian on anemia and obesity in pregnancy, published from March 2012 to March 2022. The literature search was performed in Medline, Scopus, Web of Science,
Google Scholar, PubMed, and CyberLeninka databases by the following keywords: “pregnancy,” “iron deficiency,” “anemia,” “overweight,” “obesity,” “inflammation,” and
“body mass index.”
Results: This review assesses whether obesity-induced inflammation may contribute to the increased incidence of ID/IDA in pregnant women. Despite numerous studies, the effect of maternal weight on the risk of ID/IDA during pregnancy remains unclear. Iron status metabolism markers
against inflammation are considered. PR-pregnancy obesity carries a greater risk of developing ID/IDA during pregnancy and the postnatal period for the mother and the baby.
Conclusions: Thus, a more careful study of iron levels by trimester is required. The introduction of clearly defined procedures for trimester valuation of iron and inflammatory status in antenatal and postpartum consultations is necessary.
References
Мarks P.W. Anemia: Clinical approach // In: Lazarus, H., Schmaier, A. (eds). Concise Guide to Hematology. Springer, Cham, 2019. – P. 21-27. https://doi.org/10.1007/978-3-319-97873-4_4
Premkumar S., Ramanan P.V. Weekly Iron and Folic Acid Therapy in the Treatment of Anemia in Adolescents // JEMDS. – 2019. – Vol. 7 (45). – P. 4884-4887. https://doi.org/10.5958/0976-5506.2019.02788.8
WHO. The Global Prevalence of Anemia in 2011. – Geneva: World Health Organization, 2015. – P. 1-48. http://apps.who.int/iris/bitstream/handle/10665/177094/9789241564960
Benotti P. N., Wood G. C., Still C. D., Gerhard G. S., Rolston D. D., Bistrian B. R. Metabolic surgery and iron homeostasis // Obesity Reviews. – 2019. – Vol. 20 (4). – P. 612-620. https://doi.org/10.1111/obr.128119
Michael F., Michael K.G. Guidelines for iron deficiency in pregnancy: hope abounds: Commentary to accompany: UK guidelines on the management of iron deficiency in pregnancy // British Journal of Haematology. – 2020. – Vol. 188 (6). – P. 814-816. https://doi.org/10.1111/bjh.16220
American College of Obstetrics & Gynecology. Anemia in pregnancy. ACOG Practice Bulletin, No. 233 // Obstet. Gynecol. – 2021. – Vol. 138 (2). – P. E55-e64. https://doi.org/10.1097/AOG.0000000000004477
Siu A.L. Screening for iron deficiency anemia and iron supplementation in pregnant women to improve maternal health and birth outcomes: U.S. Preventive Services Task Force recommendation statement // Ann. Intern. Med. – 2015. – Vol.163 (7). – P. 529-536. https://doi.org/10.7326/M15-1707
Pavord S., Daru J., Prasannan N., Robinson S., Stanworth S., Girling J. UK guidelines on the management of iron deficiency in pregnancy // Brit. J. Haematol. – 2020. – Vol.188 (6). – P. 819-830. https://doi.org/10.1111/bjh.16221
Perez E.M., Hendricks M.K., Beard J.L., Murray-Kolb L.E., Berg A., Tomlinson M., Irlam J., Isaacs W., Njengele T., Sive A. Mother-infant interactions and infant development are altered by maternal iron deficiency anemia // J. Nutrition. – 2005. – Vol.135 (4). – P. 850–855. https://doi.org/10.1093/jn/135.4.850
Tan J., He G., Qi Y., Yang H.Y., Xiong Y., Liu C. Prevalence of anemia and iron deficiency anemia in Chinese pregnant women (iron women): a national cross-sectional survey // Res. Square. – 2020. – Vol. 70 (1). – Art. ID 670. https://doi.org/10.1186/s12884-020-03359-z
Tatsuo K., Michael V. A., Rosario S. Adipose tissue inflammation and metabolic dysfunction in obesity // Am. J. Physiol. Cell Physiol. – 2021. – Vol. 320 (3). – P. 375-391. https://doi.org/10.1152/ajpcell.00379.2020
Rahma R., Lumbanraja S.N., Lubis Z. Hepcidin and Feritin Levels in Obese Pregnant Nonnormal Body Weight before Pregnancy // IJM. – 2018. – Vol. 3 (3). – P. 22-26. https://doi.org/10.26911/theijmed.2018.03.01.03
Finkenstedt A., Widschwendter A., Brasse-Lagnel C.Q. Hepcidin is correlated to soluble hemojuvelin but not to increased GDF15 during pregnancy // Blood Cells Molec. Dis. – 2012. – Vol. 48 (4). – P. 233-237. https://doi.org/10.1016/j.bcmd.2012.02.001
Van Santen S., Kroot J.J.C., Zijderveld G., Wiegerinck E.T., Spaanderman M.E.A., Swinkels D.W. The iron regulatory hormone hepcidin is decreased in pregnancy: A prospective longitudinal study // Clin. Chem. Lab. Med. – 2013. – Vol. 51(7). – P. 1395-1401. https://doi.org/10.1515/cclm-2012-0576.
Lehtihet M., Bonde Y., Beckman L., Pantopoulos K. Circulating hepcidin-25 is reduced by endogenous estrogen in humans // PLoS One. – 2016. – Vol. 11 (2). – Art. ID e0148802. https://doi.org/10.1371/journal.pone.0148802
Fisher A.L., Nemeth E. Iron homeostasis during pregnancy // Am. J. Clin. Nutrition. – 2017. – Vol. 106 (6). – P.1567- 1574. https://doi.org/10.3945/ajcn.117.155812.
Young M.F., Griffin I., Pressman E. Maternal Hepcidin Is Associated with Placental Transfer of Iron Derived from Dietary Heme and Nonheme Sources // J. Nutr. – 2012. – Vol.142 (1). – P. 33-39. https://doi.org/10.3945/jn.111.145961
Miller E.M. The reproductive ecology of iron in women // Am. J. Anthropol. – 2016. – Vol. 159 (61). – P. 172-195. https://doi.org/10.1002/ajpa.22907.
Tussing-Humphreys L., Pusatcioglu C., Nemeth E., Braunschweig C. J. Rethinking iron regulation and assessment in iron deficiency, anemia of chronic disease, and obesity: Introducing hepcidin // Acad. Nutr. Diet. – 2012. – Vol. 112(3). – Р. 391-400. https://doi.org/10.1016/j.jada.2011.08.038
Dao M.C., Sen S., Iyer C., Klebenov D., Meydani S.N. Obesity during pregnancy and fetal iron status: Is hepcid in the link? // J. Perinatol. – 2013. – Vol. 33 (3). – Р.177-181. https://doi.org/10.1038/jp.2012.81
Flynn A.C., Begum S., White S.L., Dalrymple K., Gill C., Alwan N.A., Kiely M., Latunde-Dada G., Bell R., Briley A.L. Relationships between Maternal Obesity and Maternal and Neonatal Iron Status // Nutrients. – 2018. – Vol. 10 (8). – Art. ID 1000. https://doi.org/10.3390/nu10081000
Cao C., Pressman E.K., Cooper E.M., Guillet R., Westerman M., O’Brien K.O. Prepregnancy Body Mass Index and Gestational Weight Gain Have No Negative Impact on Maternal or Neonatal Iron Status // Reprod. Sci. – 2016. – Vol. 39 (10). – Р. 613-622. https://doi.org/10.1096/fj.201600069R
Garcia-Valdes L., Campoy C., Hayes H., Florido J., Rusanova I., Miranda M.T., McArdle H.J. The impact of maternal obesity on iron status, placental transferrin receptor expression and hepcidin expression in human pregnancy // J. Int. Obes. – 2015. – Vol. 39 (4). – Р. 571-578. https://doi.org/10.1038/ijo.2015.3.
Jones A.D., Zhao G., Jiang Y.P., Zhou M., Xu G., Kaciroti N., Zhang Z., Lozoff B. Maternal obesity during pregnancy is negatively associated with maternal and neonatal iron status // Eur. J. Clin. Nutr. – 2016. – Vol. 70 (8). – Р. 918-924. https://doi.org/10.1038/ejcn.2015.229
Flores-Quijano M.E., Montalvo-Velarde I., Vital-Reyes V.S., Rodríguez-Cruz M., Rendón-Macías M.E., López-Alarcón M. Longitudinal Analysis of the Interaction Between Obesity and Pregnancy on Iron Homeostasis: Role of Hepcidin // Arch. Med. Res. – 2016. – Vol. 47 (7). – Р. 550-556. https://doi.org/10.1016/j.arcmed.2016.11.011
Koenig M.D., Klikuszowian T., O’Brien K.O., Pauls H., Steffen A., DeMartelly V., Ruchob R., Welke L., Hemphill N., LaBomascus B. Prepregnancy Obesity Is Not Associated with Iron Utilization during the Third Trimester // J. Nutrition. – 2020. – Vol. 150 (6). – P. 1397-1404. https://doi.org/10.1093/jn/nxaa065
Rawal S., Hinkle S.N., Bao W., Zhu Y., Grewal J., Albert P.S., Weir N.L., Tsai M.Y., Zhang C.A. Longitudinal study of iron status during pregnancy and the risk of gestational diabetes: Findings from a prospective, multiracial cohort // Diabetologia. – 2017. – Vol. 60 (2). – Р. 249-257. https://doi.org/10.1007/s00125-016-4149-3
Hedengran K.K., Nelson D., Andersen M.R., Stender S., Szecsi P.B., Matern J. Hepcidin levels are low during pregnancy and increase around delivery in women without iron deficiency – A prospective cohort study // Fetal. Neonatal Med. – 2016. – Vol. 26 (29). – Р. 1506-1508. https://doi.org/10.3109/14767058.2015.1052396
Flores-Quijano М.E., Vega-Sánchez R., Tolentino-Dolores M.C., López-Alarcón M.G., Flores-Urrutia M.C., López Olvera F.D., Talavera J.O. Obesity Is Associated with Changes in Iron Nutrition Status and Its Homeostatic Regulation in Pregnancy // Nutrients. – 2019. – Vol. 11 (3). – Р. 693. https://doi.org/10.3390/nu11030693
Pendeloski K.P.T., Ono E., Torloni E., Mattar R., Daher S. Reprod Maternal obesity and inflammatory mediators: A controversial association // Am. J Immunol. – 2017. – Vol. 77. – Р. 1-8. https://doi.org/10.1111/aji.12674
Dosch N.C., Guslits E.F., Weber M.B., Murray S.E., Ha B., Coe C.L., Auger A.P., Kling P.J. Maternal Obesity Affects Inflammatory and Iron Indices в Umbilical Cord Blood // Physiol. Behav. – 2016. – Vol. 172. – Р. 20-28. https://doi.org/10.1016/j.jpeds.2016.02.023
Downloads
Published
How to Cite
Issue
Section
License
The articles published in this Journal are licensed under the CC BY-NC-ND 4.0 (Creative Commons Attribution – Non-Commercial – No Derivatives 4.0 International) license, which provides for their non-commercial use only. Under this license, users have the right to copy and distribute the material in copyright but are not permitted to modify or use it for commercial purposes. Full details on the licensing are available at https://creativecommons.org/licenses/by-nc-nd/4.0/.