Исходы программ ВРТ в зависимости от статуса генов фолатного обмена в казахской популяции

Авторы

  • А.Н. Рыбина Персона
  • А. Ellenbogen
  • Д.Д. Мукушкина
  • Ш.К. Карибаева
  • Р.К. Валиев

DOI:

https://doi.org/10.37800/RM.1.2024.17-26

Ключевые слова:

вспомогательные репродуктивные технологии (ВРТ), фолатный обмен, MTHFR, MTR, MTRR, ЭКО/ИКСИ

Аннотация

Актуальность: Обмен фолатов оказывает влияние на работу яичников, процессы имплантации, эмбриогенез и общий ход беременности. Помимо известного воздействия на частоту дефектов нервной трубки, выявлена связь между уменьшением уровня фолиевой кислоты, увеличением концентрации гомоцистеина и различными осложнениями беременности, включая повторяющиеся самопроизвольные аборты. Процессы обмена фолатов напрямую влияют на синтез и метилирование нуклеотидов, что привлекает растущее внимание в сфере репродуктивной медицины. Исследуется влияние генетических вариантов, связанных с обменом фолатов, на результаты процедур ЭКО/ИКСИ у пациенток с бесплодием. Однако пока нет однозначных ответов, так как данные различаются в зависимости от этнических групп. В казахской популяции влияние неблагоприятных генетических вариантов на результаты программ ВРТ ранее не исследовалось.
Цель исследования – определение влияния статуса носительства генов фолатного обмена на исходы программ ВРТ в казахской популяции.
Материалы и методы: Проведено ретроспективное исследование носительства полиморфизмов MTHFR rs1801133 (C677T), rs1801131 (A1298C) , MTR rs 1805087 (A2756G), MTRR rs1801394 (A66G) у 132 пациенток казахской национальности, прошедших программу ЭКО/ИКСИ и перенос эмбрионов в МКЦР PERSONA (Алматы, Казахстан) с 2016 по 2022 гг.
Результаты: Носительство неблагоприятных полиморфизмов генов фолатного обмена ассоциировано с большим количеством программ ВРТ, длительностью бесплодия, количеством беременностей, количеством неразвивающихся беременностей/выкидышей, количеством отпунктированных фолликулов, количеством полученных ооцитов, количеством зрелых ооцитов, частотой оплодотворения, количеством бластоцист.
Заключение: Наше исследование показало, что 91% пациенток с бесплодием являются носителями того или иного неблагоприятного аллеля и генотипа полиморфизмов rs1801133 и rs1801131 гена MTHFR, rs 1805087 гена MTR, rs1801394 гена MTRR. Учитывая влияние носительства неблагоприятных полиморфизмов генов фолатного обмена на исходы ВРТ, можно рекомендовать женщинам, имеющим в анамнезе неудачные попытки ЭКО, отсутствие эмбрионов хорошего качества, блоки развития эмбрионов, отсутствие эуплоидных эмбрионов, проводить генотипирование на rs1801133 и rs1801131гена MTHFR, rs 1805087 гена MTR, rs1801394 гена MTRR и назначать персонифицированную прегравидарную подготовку перед следующей программой ВРТ с учетом генотипов.

Библиографические ссылки

Larina T, Suprun S. Folate cycle: pathogenetic mechanisms of pregnancy complications. Bull Physiol Pathol Respir. 2018;1(70):113-120. http://naukaru.ru/en/nauka/article/24381/view

Thaler CJ. Folate metabolism and human reproduction. Geburtshilfe Frauenheilkd. 2014;74(9):845–51.

https://doi.org/10.1055/s-0034-1383058

Yuan D, Chu J, Lin H, Zhu G, Qian J, Yu Y, Yao T, Ping F, Chen F, Liu X. Mechanism of homocysteine-mediated endothelial injury and its consequences for atherosclerosis. Front Cardiovasc Med. 2023;9:1-12.

https://doi.org/10.3389/fcvm.2022.1109445

Dai C, Fei Y, Li J, Shi Y, Yang X. A Novel Review of Homocysteine and Pregnancy Complications. Biomed Res Int. 2021. https://doi.org/10.1155/2021/6652231

Святова Г, Махмутова З. Популяционно-генетический анализ полиморфизма гена метилентетрагидрофолатредуктазы при дефектах невральной трубки в казахской популяции. 2008;156.

Svjatova G, Mahmutova Z. Population-genetic analysis of polymorphism of the methylenetetrahydrofolate reductase gene in neural tube defects in the Kazakh population. 2008;156. ISBN:978-601-7048-06-8. (in Russ.)

https://webirbis.qmu.kz/lib/document/BOOK/D483DA00-422F-4612-90ED-0C3AD7839926/

Karimian M, Hosseinzadeh Colagar A. Methionine synthase A2756G transition might be a risk factor for male infertility: Evidences from seven case-control studies. Mol Cell Endocrinol. 2016;425:1-10.

https://doi.org/10.1016/j.mce.2016.02.012

Gonzales MC, Yu P, Shiao SPK. MTHFR Gene Polymorphism-Mutations and Air Pollution as Risk Factors for Breast Cancer: A Metaprediction Study. Nurs Res. 2017;66(2):152-163.

https://doi.org/10.1097/NNR.0000000000000206

Tan X, Yu Zh, Sao J, Chen L, Shen Y, Ding J, Shi W. Association between in vitro fertilization outcomes and inherited thrombophilias: a meta-analysis. J Assist Reprod Genet. 2016;33(8):1093-1098.

http://dx.doi.org/10.1007/s10815-016-0726-0

Murto T, Kallak TK, Hoas A, Altmäe S, Salumets A, Nilsson TK, Svanberg AS, Wånggren K, Yngve A, Stavreus-Evers A. Folic acid supplementation and methylenetetrahydrofolate reductase (MTHFR) gene variations in relation to in vitro fertilization pregnancy

outcome. Acta Obstet Gynecol Scand. 2015;94(1):65-71.

https://doi.org/10.1111/aogs.12522

Reyes-Engel A, Muñoz E, Gaitan MJ, Fabre E, Gallo M, Dieguez JL, Ruiz M., Morell M. Implications of human fertility of the 677C→T and 1298A→C polymorphisms of the MTHFR gene: Consequences of a possible genetic selection. Mol Hum Reprod. 2002;8(10):952–7.

https://doi.org/10.1093/molehr/8.10.952

Isotalo PA, Wells GA, Donnelly JG. Neonatal and fetal methylenetetrahydrofolate reductase genetic polymorphisms: An examination of C677T and A1298C mutations. Am J Hum Genet. 2000;67(4):986–990.

https://doi.org/10.1086/303082

Ishitani H, Ikeda Sh, Egashira K, Sugimoto M, Kume Sh, Minami N, Ohta T. Embryonic MTHFR contributes to blastocyst development. J Assist Reprod Genet. 2020;37(8):1807-1814.

https://doi.org/10.1007/s10815-020-01898-0

Kalimagambetov AM, Mukhamediyarova SK, Bekimbek AT, Rakisheva ZB, Belousov VY, Solomadin MV, K.A. Sadueva. Association of folate cycle polymorphic genes with pregnancy complications in women of the Kazakh ethnic group. Exp Biol. 2020;82(1):110–9.

https://bb.kaznu.kz/index.php/biology/article/view/1477

D’Elia PQ, dos Santos AA, Bianco B, Barbosa CP, Christofolini DM, Aoki T. MTHFR polymorphisms C677T and A1298C and associations with IVF outcomes in Brazilian women. Reprod Biomed Online. 2014;28(6):733-738.

http://dx.doi.org/10.1016/j.rbmo.2014.02.005

Zeng H, Liu Z, Zhang L, Liu N. MTHFR 677TT is associated with decreased embryos and cumulative live birth rate in patients undergoing GnRHa short protocol: a retrospective study. BMC Pregnancy Childbirth. 2022;22(1):1-13.

https://doi.org/10.1186/s12884-022-04506-4

Zeng Sh, Wang X, Wang Y, Xu Zh, Zhang J, Liu W, Qian L, Chen X, Wei J, Yang X, Gong Zh, Yan Y. MTHFR C677T polymorphism is associated with follicle-stimulating hormone levels and controlled ovarian hyperstimulation response: a retrospective study from the clinical database. Fertil Steril. 2019;111(5):982-990.e2.

https://doi.org/10.1016/j.fertnstert.2019.01.016

Boudjenah R, Molina-Gomes D, Torre A, Bergere M, Bailly M, Boitrelle F, Taieb S, Wainer R, Benahmed M, De Mazancourt P, Selva J, Vialard F. Genetic Polymorphisms Influence the Ovarian Response to rFSH Stimulation in Patients Undergoing In Vitro Fertilization Programs with ICSI. Lobaccaro J-MA, editor. PLoS One. 2012;7(6):e38700.

https://doi.org/10.1371/journal.pone.0038700

Dobson AT, Davis RM, Rosen MP, Shen S, Rinaudo PF, Chan J, Cedars MI. Methylenetetrahydrofolate reductase C677T and A1298C variants do not affect ongoing pregnancy rates following IVF. Hum Reprod. 2006;22(2):450-456.

https://doi.org/10.1093/humrep/del396

Zheng-Jua R, Yan-Ping Zh, Peng-Wei R, Bo Y, Shi D, Zhu-Feng P, Liang-Ren L, WuRan W, Qiang D. Contribution of MTR A2756G polymorphism and MTRR A66G polymorphism to the risk of idiopathic male infertility Systematic Review and Meta-Analysis Medicine ® OPEN 1. China Sci Technol J Database. 2019;

http://dx.doi.org/10.1097/MD.0000000000018273

Ivanov AV., Dedul AG, Fedotov YN, Komlichenko EV. Toward optimal set of single nucleotide polymorphism investigation before IVF. Gynecol Endocrinol. 2016;32:11-18.

https://doi.org/10.1080/09513590.2016.1232793

Jarrett H, McNulty H, Hughes CF, Pentieva K, Strain JJ, McCann A, McAnena L, Cunningham C, Molloy AM, Flynn A, Hopkins SM, Horigan G, O’Connor C, Walton J, McNulty BA, Gibney MJ, Lamers Y, Ward M. Vitamin B-6 and riboflavin, their metabolic interaction, and relationship with MTHFR genotype in adults aged 18–102 years. Am J Clin Nutr. 2022;116(6):1767-1778.

https://doi.org/10.1093/ajcn/nqac240

Pavlik R, Hecht S, Noss U, Soldin OP, Mendu RD, Soldin SJ, Lohse P, Thaler CJ. Reduced Steroid Synthesis in the Follicular Fluid of MTHFR 677TT Mutation Carriers: Effects of Increased Folic Acid Administration. Geburtshilfe Frauenheilkd. 2022;82(10):1074-1081. https://doi.org/10.1055/a-1791-9358

Dattilo M, Giuseppe D, Ettore C, Ménézo Y. Improvement of gamete quality by stimulating and feeding the endogenous antioxidant system: mechanisms, clinical results, insights on gene-environment interactions and the role of diet. J Assist Reprod Genet. 2016;33(12):1633-1648.

http://link.springer.com/10.1007/s10815-016-0767-4

Приказ Министерства здравоохранения Республики Казахстан от 15 декабря 2020 №172 «О внесении изменений и дополнений к Приказу МЗ РК от 30 октября 2009 №627 «Правила проведения вспомогательных репродуктивных методов и технологий».

Order of the Ministry of Health of the Republic of Kazakhstan dated December 15, 2020 No. 172 "On Amendments and Additions to the Order of the Ministry of Health of the Republic of Kazakhstan dated October 30, 2009 No. 627 "Rules for assisted reproductive methods and technologies". (in Russ.)

https://online.zakon.kz/Document/?doc_id=38985208

Khalighi K, Cheng G, Mirabbasi S, Khalighi B, Wu Y, Fan W. Opposite impact of Methylene tetrahydrofolate reductase C677T and Methylene tetrahydrofolate reductase A1298C gene polymorphisms on systemic inflammation. J Clin Lab Anal. 2018;32(5):e22401.

https://doi.org/10.1002/jcla.22401

Li T, Chen Y, Li J, Yang X, Zhang H, Qin X, Hu Y, Mo Z. Serum homocysteine concentration is significantly associated with inflammatory/immune factors. PLoS ONE. 2015;10:e0138099.

https://doi.org/10.1371/journal.pone.0138099

Bayarsaihan D. Epigenetic mechanisms in inflammation. J Dent Res. 2011;90:9‐17.

https://doi.org/10.1177/0022034510378683

Загрузки

Опубликован

01.04.2024

Как цитировать

[1]
Рыбина, А., Ellenbogen А., Мукушкина, Д. , Карибаева, Ш. и Валиев, Р. 2024. Исходы программ ВРТ в зависимости от статуса генов фолатного обмена в казахской популяции. Репродуктивная медицина (Центральная Азия). 1 (апр. 2024), 17–26. DOI:https://doi.org/10.37800/RM.1.2024.17-26.